Create your own NSM devices with Suricata using Dualcomm's ETAP-PI, network tap appliance as well as Raspbery Pi with power redundant, graceful shutdown, user defined push buttons and leds.

Dualcomm's ETAP-PI is a network tap appliance, there are two gigabit port for inline connection, and 1 monitor gigabit port that aggregate the traffic. Not only network tap, ETAP-PI has a raspberry Pi 4 inside the box. We can create our own NSM (network security monitoring), NIDS devices using Suricata, Snort and so on. This TAP appliance has dual redundant power supply and graceful shutdown button, as well as user-defined two LEDs and a push button for enterprise use.

I refer the useful websites below:

https://jufajardini.wordpress.com/2021/02/15/suricata-on-your-raspberry-pi/

https://www.reddit.com/r/raspberry_pi/comments/np1a8f/building_my_home_intrusion_detection_system/

Step1: Install Suricata for Raspberry Pi4

Install required packages

apt-get install python-pip libnss3-dev liblz4-dev libnspr4-dev libcap-ng-dev git

Install packages for build Suricata

apt install libpcre3 libpcre3-dev build-essential libpcap-dev libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev make libmagic-dev libjansson-dev rustc cargo python-yaml python3-yaml liblua5.1-dev Get Suricata source file

wget https://www.openinfosecfoundation.org/download/suricata-6.0.3.tar.gz

Extract source file and change directory for source file

 $tar -xvf \ suricata - 6.0.3. tar.gz$

cd suricata-6.0.3

Execute configure script with some option

./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var --enable-nfqueue --enable-lua

Compile and install Suricata

make

sudo make install

Setup rules

cd suricata-update

sudo python setup.py build

sudo python setup.py install

cd ..

sudo make install-full

Step2: Suricata Configuration

Update Suricata rules

sudo suricata-update

Edit configuration file

Nano /etc/suricata/suricata.yaml

Check #ring-size: 2048 section

And uncomment and change ring buffer size to 30000

ring-size: 30000

Step3: Execute Suricata and Test detection

Execute suricata in background (-c config file -i interface -S rule file)

sudo suricata -c /etc/suricata/suricata.yaml -i eth0 -S /var/lib/suricata/rules/suricata.rules &

Check the latest log file

sudo tail -f /var/log/suricata/fast.log

Access malware specific website

wget 3wzn5p2yiumh7akj.onio

and you can find alert event like that

ET MALWARE Cryptowall .onion Proxy Domain [**] [Classification: A Network Trojan was detected] [Priority: 1] ps aux | grep suricata to find process ID and kill the process after testing

Step4: Set Suricata as a service

Edit service script

nano /etc/systemd/system/suricata.service

Copy and Paste a sample

[Unit]

Description=Suricata Intrusion Detection Service

After=network.target syslog.target

[Service]

ExecStart=/usr/bin/suricata -c /etc/suricata/suricata.yaml -i eth0 -S /var/lib/suricata/rules/suricata.rules

ExecReload=/bin/kill -HUP \$MAINPID

ExecStop=/bin/kill \$MAINPID

[Install]

WantedBy=multi-user.target

Start/Stop/Restart/Check Suricata as a service

sudo service suricata [start/stop/restart/status]

```
Step5: Check log and Log rotate
Suricata creates log files at /var/log/suricata
  eve, json: huge json file for analysing with Erastic Search and Kibana or Sprunk, etc.
  fast.log: suspicious event log (it is useful to just check event)
  stats.log: network statistics log
  suricata.log: Suricata's service log
Check the latest suspicious events
 sudo tail -n 100 -f /var/log/suricata/fast.log
Suricata may create huge size of log file, so you may configure log rotate setting, so edit log rotate setting file
nano /etc/logrotate.d/suricata
   /var/log/suricata/*.log /var/log/suricata/*.json
  {
       daily
       maxsize 1G
       rotate 30
       missingok
       nocompress
       create
       sharedscripts
       postrotate
       systemctl restart suricata.service
       endscript
  }
It means each daily log file limit to 1GB and holds the latest 30 files (for a month)
Change logrotate configuration
 Sudo logrotate -f /etc/logratate.conf
Step6: Automatically update Suricata rules at midnight
 Edit crontab to update and restart suricata at 3:33 am
 33 3 * * * sudo suricata-update && sudo service suricata restart
It is a typical setting of maintain Suricata by Raspberry Pi but works best with ETAP-PI
Create and customize your own stable NSM device and be ready for cyber security.
I recommend to connect other packet capturing devices at external port of ETAP-PI.
We can check actual pcap/pcapng file with Wireshark, if you find some important security event!!
```

Megumi Takeshita, ikeriri network service co., ltd. (Twitter@ikeriri / megumi@ikeriri.ne.jp)

https://www.ikeriri.ne.jp/develop/Dualcomm/rapsberrypinetworkappliance.html

User's Quick Guide Raspberry Pi Network TAP Appliance

(Model No. ETAP-PI)

Description:

Dualcomm Raspberry Pi Network TAP Appliance (Model ETAP-PI) is a compact portable 10/100/1000Base-T Gigabit Network TAP Appliance that integrates a Raspberry Pi 4 single board computer and a Network TAP into one device. As shown in the block diagram above, ETAP-PI captures packets running through two network Ports A and B and sends them to the Raspberry Pi. An external LAN port is provided for a user to access the Raspberry Pi.

ETAP-PI offers a cost-effective solution for remotely monitoring network traffic of an Ethernet network.

Package Contents:

- One ETAP-PI Network Tap Appliance unit
- One AC/DC power adapter (output = +5VDC@3A)

© 2021 DualComm Technology, Inc. All Rights Reserved.

Front Panel

Network Ports	RJ45 Ports "A" and "B". They are used to connected two end devices of an Ethernet link being monitored. These two ports allow PoE inline power to pass-through between them.
User Defined I/F	Pushbutton "SW" and bi-color LED "D1" and "D2" that are connected to GPIO pins with GPIO pin numbers as shown in the block diagram.
Graceful Shutdown	Hold the pushbutton "PWR" for 5 seconds to gracefully shutdown the Raspberry Pi and the LED "OK" will be turn off. This is necessary before removing power input on the rear panel.

Rear Panel

Dual Power Inputs	Power jack "PWR1" and/or "PWR2" is used to connected to a +5VDC AC/DC power adapter. When ETAP-PI is powered properly, the corresponding LED will be turned on.
Monitor/LAN Port	RJ45 port. It is used to access the Raspberry Pi in ETAP-PI. The monitoring function is enabled by software that is currently not available.
GPIO/+5VDC I/F	Reserved for future uses

www.duacomm.com